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1 Introduction

The joints are sometimes referenced casually as shoulder pan (θ1), shoulder lift (θ2), elbow (θ3), wrist 1
(θ4), wrist 2 (θ5), and wrist 3 (θ6). For the remainder of the document, we use the short-hand ci = cos θi,
si = sin θi, and for angle sums, cij = cos(θi + θj). The

2 Forward Kinematics

We first begin by giving the forward kinematics, describing the position of the end effector as a function of
joint angles:

0B6(θ1, θ2, θ3, θ4, θ5, θ6) =0B1(θ1)1B2(θ2)2B3(θ3)3B4(θ4)4B5(θ5)5B6(θ6) =
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Figure 1: Coordinate frames for UR arm. Joints rotate around the z-axes and are
pictured at θi = 0 for 1 ≤ i ≤ 6.

i di ai αi

0 - 0 0
1 d1 0 π/2
2 0 a2 0
3 0 a3 0
4 d4 0 π/2
5 d5 0 −π/2
6 d6 - -

Table 1: Denavit-
Hartenberg parame-
ters for the UR Arms
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nx = c6(s1s5 + ((c1c234 − s1s234)c5)/2.0 + ((c1c234 + s1s234)c5)/2.0) − (s6((s1c234 + c1s234) − (s1c234 −
c1s234)))/2.0

ny = c6(((s1c234 + c1s234)c5)/2.0− c1s5 + ((s1c234− c1s234)c5)/2.0) + s6((c1c234− s1s234)/2.0− (c1c234 +
s1s234)/2.0)

nz = (s234c6 + c234s6)/2.0 + s234c5c6 − (s234c6 − c234s6)/2.0

ox = −(c6((s1c234 + c1s234) − (s1c234 − c1s234)))/2.0 − s6(s1s5 + ((c1c234 − s1s234)c5)/2.0 + ((c1c234 +
s1s234)c5)/2.0)

oy = c6((c1c234 − s1s234)/2.0 − (c1c234 + s1s234)/2.0) − s6(((s1c234 + c1s234)c5)/2.0 − c1s5 + ((s1c234 −
c1s234)c5)/2.0)

oz = (c234c6 + s234s6)/2.0 + (c234c6 − s234s6)/2.0− s234c5s6

ax = c5s1 − ((c1c234 − s1s234)s5)/2.0− ((c1c234 + s1s234)s5)/2.0
ay = −c1c5 − ((s1c234 + c1s234)s5)/2.0 + ((c1s234 − s1c234)s5)/2.0
az = (c234c5 − s234s5)/2.0− (c234c5 + s234s5)/2.0

px = −(d5(s1c234−c1s234))/2.0+(d5(s1c234+c1s234))/2.0+d4s1−(d6(c1c234−s1s234)s5)/2.0−(d6(c1c234+
s1s234)s5)/2.0 + a2c1c2 + d6c5s1 + a3c1c2c3 − a3c1s2s3)

py = −(d5(c1c234−s1s234))/2.0+(d5(c1c234+s1s234))/2.0−d4c1−(d6(s1c234+c1s234)s5)/2.0−(d6(s1c234−
c1s234)s5)/2.0− d6c1c5 + a2c2s1 + a3c2c3s1 − a3s1s2s3)

pz = d1 + (d6(c234c5 − s234s5))/2.0 + a3(s2c3 + c2s3) + a2s2 − (d6(c234c5 + s234s5))/2.0− d5c234

3 IK Solution for UR 6-DOF Arm

The analytic inverse kinematics problem is to find the set of joint configurations Q = {qi} where qi =
(θi1, . . . , θ

i
6) ∈ [0, 2π)6 that satisfies

0B6(θi1, θ
i
2, θ

i
3, θ

i
4, θ

i
5, θ

i
6) = (0B

d
6 ) =
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 (2)

where 0B
d
6 describes the desired position and orientation of the final link.

We begin by finding θ1 using the position of the 5th joint. Analyzing the tranformation from frame 1 to
frame 5 using equations (1) and (2), we can form the equality

[1B5]LHS = [1B5]RHS (3)

[(0B1)−1(0B
d
6 )(5B6)−1]LHS = [(1B2)(2B3)(3B4)(4B5)]RHS (4)

We can then see that the y-coordinate of the position of this frame is

[(1p15)y]LHS = (px − d6zx)(−s1) + (py − d6zy)(c1) =
[
−s1 c1 0

] px − d6zxpy − d6zy
pz − d6zz

 = (0y1)T (0p05) (5)

[(1p15)y]RHS = −d4 (6)

The equation

(px − d6zx)(−s1) + (py − d6zy)(c1) = −d4 (7)
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Figure 2: Illustration of the geometry of finding θ1. This is essentially an overhead view of the robot, looking
down on the x-y plane.

is known as a phase-shift equation whose solution can be found as

tanα1 =
(0p05)y
(0p05)x

(8)

cosα2 =
d4
R

=
d4√

(0p05)2x + (0p05)2y

(9)

θ1 = α1 + α2 + π/2 = atan2((0p05)y, (0p05)x)± cos−1 d4
R

+ π/2 (10)

We can see that there are generally 2 solutions for θ1, which correspond to configurations where the shoulder
is “left” or “right”. Using the function atan2 is essential for insuring correct signs and behavior when
(0p05)x = 0. By looking at the figure 2, it is easy to see that physically, no configuration is possible which

makes
√

(0p05)2x + (0p05)2y ≤ |d4| < 0. Thus, both α1 and α2 always exist if an inverse solution exists.

Given a particular θ1, we can solve for θ5. Using the tranformation from frame 1 to frame 6, we can form
the equality

[(0B1)−1(0B
d
6 )]LHS = [(1B2)(2B3)(3B4)(4B5)(5B6)]RHS (11)

We can then see that the y-coordinate of the position of this frame is

[(1p16)y]LHS = px(−s1) + py(c1) =
[
−s1 c1 0

] pxpy
pz

 = (0y1)T (0p06) (12)

[(1p16)y]RHS = −d4 − c5d6 (13)
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Figure 3: Illustration of the geometry of finding θ5. This is an overhead view of the robot, looking down on
the x-y plane.

θ5 = ± cos−1 pxs1 − pyc1 − d4
d6

(14)

Again, we find that there are 2 solutions for θ5, which correspond to configurations where the wrist is
“in/down” or “out/up”. This occurs due to the fact that the joint sum θ234 can allow the 1B5 to achieve
orientations where 1y5 is pointing in the same direction, but that 1z5 is pointing in the opposite direction.
This flip can then be reversed very simply by the 6th joint. This joint has a solution so long as the argument
of cos−1 has magnitude not greater than 1, or |(1p16)y − d4| ≤ |d6|.

To solve for the 6th joint, we look at the 6y1 coordinate axis:

[6y1]LHS =

−xxs1 + xyc1
−yxs1 + yyc1
−zxs1 + zyc1

 (15)

[6y1]RHS =

−c6s5s6s5
−c5

 (16)

As figure 4 shows, this equality forms a spherical coordinate expression for the vector −6y1 where θ6 is the
azimuthal angle and θ5 is the polar angle. The x and y coordinates of this vector form a system which can
be easily solved as

θ6 = atan2(
−yxs1 + yyc1

s5
,
−(−xxs1 + xyc1)

s5
) (17)

The demoninators of each argument can be replaced by sign(s5). This solution is undefined in two circum-
stances, when both of the numerators are 0 or s5 = 0. Inspection of equations (15) and (16) shows that
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Figure 4: Overhead view of the kinematics problem.

these conditions actually imply each other. When s5 = 0, we know c5 = ±1, which indicates that the joints
2, 3, 4, and 6 are all parallel and the solution is underdetermined. When this occurs, a desired θ6 can be
supplied to fully determine the system.

The final 3 joints can be found easily, understanding that they together form a classical 3R planar arm.
Since we have the other 3 joints, we solve for the location of the base and end effector of the 3R arm, and
use those equations to solve. The solution has two possible configurations, where the arm is elbow “up” or
“down”. No solutions exist when the distance to the 4th joint exceeds the sum |a2 + a3| or is less than the
difference |a2 − a3|. If a2 = a3, a displacement singularity exists when θ3 = π, making θ2 arbitrary.

4 IK Extension for 7th Axis

Suppose the arm is mounted to a linear actuator aligned with the x-axis such that

−1B6(a−1, θ1, θ2, θ3, θ4, θ5, θ6) = (−1B0)(0B6) (18)

(−1B0) =


1 0 0 a−1

0 1 0 0
0 0 1 0
0 0 0 1

 (19)

where a−1 is the controllable linear translation. Since the system is now underdetermined, we must add new
constraints to solve the system. One potential method of constraining is to arbitrarily set θ1 to a desired
value, and then solve for the other 5 joint angles and a−1.

We can find the new arm tranformation

0B
new
6 = (−1B0)−1(−1B6) (20)

=


1 0 0 −a−1

0 1 0 0
0 0 1 0
0 0 0 1



nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =


nx ox ax px − a−1

ny oy ay py
nz oz az pz
0 0 0 1

 (21)

so pnewx = px − a−1. If we substitute pnewx into the equation (7), we can solve for

a−1 = px +
−d4 − (py − d6zy)(c1)

s1
− d6zx (22)

Choose θ1 such that s1 6= 0, and we can find the unique solution for a−1. By producing pnewx , we can solve
for 0B

new
6 using the remainder of the IK algorithm, starting with joint 5.
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